Impediments to diffusion in quantum graphs: Geometry-based upper bounds on the spectral gap
نویسندگان
چکیده
We derive several upper bounds on the spectral gap of Laplacian with standard or Dirichlet vertex conditions compact metric graphs. In particular, we obtain estimates based length a shortest cycle (girth), diameter, total graph, as well further quantities introduced here for first time, such avoidance diameter. Using known results about Ramanujan graphs, class expander also prove that some these quantities, combinations thereof, do not to deliver any correct scaling.
منابع مشابه
New upper bounds on the spectral radius of unicyclic graphs
Let G = (V (G), E(G)) be a unicyclic simple undirected graph with largest vertex degree . Let Cr be the unique cycle of G. The graph G− E(Cr ) is a forest of r rooted trees T1,T2, . . .,Tr with root vertices v1, v2, . . ., vr , respectively. Let k(G) = max 1 i r {max{dist(vi , u) : u ∈ V (Ti )}} + 1, where dist(v, u) is the distance from v to u. Let μ1(G) and λ1(G) be the spectral radius of the...
متن کاملSome Sharp Upper Bounds on the Spectral Radius of Graphs
In this paper, we first give a relation between the adjacency spectral radius and the Q-spectral radius of a graph. Then using this result, we further give some new sharp upper bounds on the adjacency spectral radius of a graph in terms of degrees and the average 2-degrees of vertices. Some known results are also obtained.
متن کاملUpper bounds on the solutions to n = p+m^2
ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...
متن کاملOn the spectral gap in Andreev graphs
We introduce Andreev scattering (electron-hole conversion at an interface of a normal conductor to a superconductor) at the outer vertices of a quantum star graph and examine its effect on the spectrum. More specifically we show that the density of states in Andreev graphs is suppressed near the Fermi energy where a spectral gap may occur. The size and existence of such a gap depends on one sid...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2023
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/16322